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SUMMARY

Thin film thermocouples have been developed for use on metal parts in jet engines to

1000°C. However, advanced propulsion systems are being developed that will use ceramic

materials and reach higher temperatures. The purpose of this work is to develop thin film

therrnocouples for use on ceramic materials. The thin film thermocouples are Ptl3Rh/Pt

fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding

process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and

inullite. Both steady state and thermal cycling furnace tests were performed in the

temperature range to 1500"C. High-heating-rate tests were performed in an arc lamp heat-

flux-calibration facility.

The fabrication of the thin film thermocouples is described. The thin film

thermocouple output was compared to a reference wire thermocouple. Drift of the thin film

thermocouples was determined, and causes of drift are discussed. The results of high-heating-

rate tests up to 2500"C/see are presented. The stability of the ceramic materials is examined.

It is concluded that Ptl3Rh/Pt thin film thermocouples are capable of meeting lifetime

goals of 50 hours or more up to temperatures of 1500°C depending on the stability of the
particular ceramic substrate.

INTRODUCTION

Thin film thermocouples have been available for some time for use on metal parts in

jet engines to 1000"C (ref. 1-8). However, advanced propulsion systems are being developed

that will use ceramic materials and have the capability of attaining higher temperatures in

their operation. Newer thin film thermocouples have been tested on silicon nitride at 1000"C

(ref. 9). Additional testing of thin film thermocouples on several ceramic materials up to
1400°C has been performed (ref. 10-11).

The purpose of this report is to describe the effort to develop thin fihn thermocouples

for use on ceramic materials and determine the temperature range and operating conditions Ibr

which they are capable of being used. The thin film thermocouples used were Pti3Rh/Pt

fabricated by the sputtering process, and the ceramic materials were silicon nitride, silicon

carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests

were performed in the temperature range from 1000-1500"C. High- heating-rate tests were
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also performedin an arc lamp heat-flux-calibration facility (ref. 12) to 1500"C.

APPARATUS AND EXPERIMENTAL PROCEDURE

The ceramic materials that were used in this program were silicon nitride, silicon

carbide, aluminum oxide, and lnullite. Tab. I lists the purity of these materials, the

fabrication procedures, and some of the physical properties. The low purity of the silicon

nitride is caused by the addition of 13 percent yttria and 3 percent alumina as densification

agents for the sintering process. The surface finish is of particular interest because the thin

film thermocouple is deposited on the surface of the cerarnic materials. Surface finish varied
from about .025-.15 tam for the aluminum oxide to about .5-.75 tam for the silicon nitride.

Fig. 1 shows a schematic diagram for the fabrication of thin film thermocouples on

ceramic substrates. For the electrically insulating ceramic substrates, the thin film ther,no-

elements are deposited directly on the surface. For the electrically conducting ceramic

substrate (silicon carbide), an insulating layer must be deposited between the sensor and

the substrate. A two-layer approach was used, starting with a stable, adherent, thermally

grown silicon dioxide, followed by a sputter-deposlted layer of aluminum Oxide of the

thick,less needed to obtain the required insulation resistance. Each of the two layers was 1-2 l.tm

thick. The thin fihn thermocouples are Ptl3Rh/Pt and are 5-7 lain thick. They were deposited

using the RF magnetron sputtering process at a sputtering power of 800 watts and sputtering rate

of 5 l.tm/hr. Substrate heating of about 300"C was used for the Pt and Ptl3Rh films, and oxygen-

enhanced sputtering of Pt was used for the first .021am of deposition to improve fihn adhesion.

Sputtering parameters were chosen based on previous work (ref. 5) and experience at this

laboratory.

Fig. 2 is aphotograph of the test samples used in these experiments. The ceramic

substrates are 15 cm long and 2.5 cm wide, and the thicknesses are 1.5 mm for aluminum

oxide, 4.5 mm for mullite, and 6 mm for silicon nitride and silicon carbide. They were

cemented to an aluminum oxide support plate using an alumina-based cement with no binders.

The thin film thermocouple deposited on the test sample was at least 12.5 cm long with film

widths of about 3 ram. Ptl3Rh/Pt lead wires were attached to the thin films using the

parallel-gap welding process described in detail in ref. 13. These wires were 75 _m in

diameter and were routed throt,gh ceramic tt, bing to connectors.

Two ceramic tube furnaces were used in these experiments. The furnaces had a

maximum temperature capability of 1300 and 1700"C, respectively. Set-point control of the

furnaces was about +I"C in the central core of each furnace. Reference thermocouples made

from 0.5 mm Type R (Ptl3Rh/Pt) material were used to monitor these temperatures.

Negligible drift rates for these reference thermocouples were observed throughout the testing;

they verified the stability of the furnaces. Thermoelectric potentials were measured with a

digital voltmeter wilh a sensitivity of ! l.tvolt and an accuracy of ±0.01 percent + 5 lavolts.

Cold junction temperature was recorded but not controlled, and the emf data were corrected to

0"C. Furnace testing of the thermocoup/es took place in steady state and thermal cycling

modes_ For steady-state tests, two types of test sample configurations were used. In one

configuration, the test sample was only partially inserted into the furnace, resulting in a large
temperature gr_h'ent along the length of the thin film thermocouple up to a maximu,n of
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about60@'C.This temperature gradient is shown in Fig. 3 as a function of furnace

temperature for silicon nitride and silicon carbide test pieces. In the other configuration, the

entire test sample and part of the support plate was inserted into the furnace, resulting in a

srnall temperature gradient along the length of the thin film thermocouple up to a maximum

of about 100"C. These two test configurations were chosen to evaluate the effect of different

temperature gradients on drift rate patterns in thin film thermocouple circuits. The steady-

state tests were carried out in the temperature range from 1000-1500°C. Thermal cycling

accompanied repeated steady-state tests of a particular test sample.

A total of 15 test samples was fabricated and tested for these experiments. Total test

time was about 1000 hours. The lifetime goal of a sensor for advance propulsion system

applications was about 50 hours. For laboratory testing, longer lifetimes would be desirable.

High-heating-rate tests were also performed, using an arc lamp heat-flux-calibration

facility. Currents of 50-400 amps are generated in the lamp to produce heat fluxes in the

range from about 0.1-5 Mw/m 2.

RESULTS AND DISCUSSION

The discussion of the results of these tests is divided into three main parts. First, the

initial accuracy of the thin film thermocouple, as fabricaled, will be discussed. Second, the

subject of thermocouple drift will be discussed to illustrate the causes and effects of the

change in thermocouple output with time. And last, an analysis will be made of the physical

durability of the thin film thermocouples, which includes a discussion of the physical

durability of the ceramic materials as well.

Calibration of Thin Film Thermocouples

A calibration experiment was performed to determine the accuracy of the thin fihn

thermocouple as fabricated by the sputtering process. The thin film thermocouple was

fabricated on a silicon nitride substrate in the configuration shown in Fig. 2. A wire

thermocouple made from the same 75-_tm-diameter wire used for the lead wires of the thin

film thermocouple was cemented to the back of the test piece directly opposite the thin film

thermocouple jtmction.

The test was performed in the configuration in which the test piece was only partially

inserted into the furnace, resulting in the maximum attainable temperature gradient along the

length of the thin film thermocouple. In a separate experiment, the value of this temperature

gradient was determined as a function of furnace temperature; it is shown in Fig. 3. These

data were obtained by cementing an additional wire thermocouple to the back of the test piece

opposite the thin-film-to-lead-wire connection.

The calibration test results showed that the thin film thermocouple output was 3

percent less than the wire thermocouple. The result is expressed as percent of the

temperature gradient applied to the thin film. The major uncertainty in the experiment is

caused by the severe temperature gradient on the test piece and the inability of the cemented
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referencethermocouple to indicate tile exact test piece temperature at the exact location of the

thin film thermocouple junction.

Causes of Thin Film Thermocouple Drift

Thermocouple drift is defined as a change with time in the voltage vs temperature

characteristic of a thermocouple. Suspected causes of thermocouple drift in these thin film

thermocouples are oxidation of Rh in the Ptl 3Rh thermoelement, foreign material at the thin-

film-to-lead wire connection, and chemical interaction or diffusion between the sensor and the

s u bstrate:

Preferential oxidation of rhodium in the Ptl3Rh leg of the thermocouple would cause

a change in the Pt/Rh ratio in that leg a,_d result in thermocouple drift. This oxidation rate

increases as temperature increases, but there is a conversion of the oxide back to elemental

rhodium at a temperature of about 1000"C and above. Oxidation rate is also proportional to

the surface area/volume ratio of the thin film sensor End lead W_re geometry. Tile value of

this ratio is at least 4 times greater for a 5 l.tm thin film compared to a 75 _m diameter lead

wire. Finally, oxidation rate is dependent on the quantity of oxygen present in the gaseous

environment surrounding the thermocouple. In these experiments, ambient air was the

environment for all of the thermocouples.

The thin-film-to-lead-wire connection could be a source of thermocouple drift if a

foreign material, such as a cement or paste, were introduced into the thermocouple circuit at

this point to make the connection. But in these experiments, connections were made using

the parallel-gap welding process, which eliminates this source of thermocouple drift.

Thermocouple drift could originate at the substrate-sensor interface if a chemical
reaction were to occur at this interface or if diffusion of material into or out of the

thermocouple were to occur that would change the thermoelectric characteristics of either
thermoelement.

Results of Thermocouple Drift

Drift-rate data for thin film thermocouples on ceramic materials are shown in Figs. 4

and 5 for steady state tests. The data are plotted as drift rate in "C/hr against the steady state

temperature, and each point represents the average drift rate of a steady state test. Also
shown on each figure is_the temperature gradient across the thin film portion of the

thermocouple circuit. In Fig. 4, the tests were performed on silicon nltrlde and silicon

carbide substrates with a l_irge _em_i'ature gradiem of 500-600"C across the length of the thin

film. This was accomplished by inserting only part of the test samples (shown iri Fig. 2) into

the testing furnace. With the hot junction of the thin film thermocoupie at about 1000-

1200"C in these tests, the lead wire end of tile thin film thermoc0uple would be about 500-

700"C; thus a large portion of the thin film would be in the temperature rangewhere rhodium

oxidation occurs. The result is a drift rate of about 0.5"C/hr. In these tests, the region of

rhodium oxidation was easily seen by the formation of a dark deposit on the Ptl 3Rh
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thermoelement. Tests were also performed where the temperature gradient along the length

of the thin film was only about 100"C (Fig. 5). In these tests, the entire test piece and part of

the support plate is inserted into the testing furnace. For a test where the hot .junction of the

thin film is at 1200"C, the lead-wire end of the thin film would be at about 1100"C; thus only

the lead-wire portion of the thermocouple circuit would be in the temperature range where

rhodium oxidation occurs. This results in a drift rate of less than 0.2"Cdlr for the data in Fig.

5 between about 1000-1200"C. There is no dark deposit on the Ptl3Rh thin film

thermoelement.

At temperatures greater than about 1250°C in Fig. 5, drift rates rapidly increase as test

temperature increases. It is suspected that a sensor-substrate interaction is beginning to occur

in this temperature range, either because of a chemical reaction or a diffusion effect. It
should also be noted that the drift rate is not the same for each substrate material in this

higher temperature range. Auger depth profiling analysis is being used to analyze these

effects.

A thermocouple probe was fabricated completely from 75 _tn lead wire in order to

separately determine lead-wire drift rate. The drift rate was determined at three temperature
T' rlevels. The drift rate was .0, C/h at 1150"C, 0.1"C/hr at 1370"C, and 0.3°C/hr at 1500"C.

These lead-wire drift rates are tabulated in Fig. 6 along with selected values of the drift rates

of the thin film thermocouples on the fotnr ceramic materials. Figs. 4-6 illustrate the

complexity of thermocouple drift of thin film thermocouples, which are in actuality composite

thin film/lead-wire thermocouple circuits. We can summarize the information contained in

Figs. 4-6. Drift rate varies with: the absolute temperature level; the substrate material on

which the thin film thermocouple is deposited; the temperature gradient distribution between

the thin film and the lead-wire portion of the circuit; and the film thickness and diameter of

the thin films and lead-wires, respectively. And for every application, some of these factors
could well be different.

Fig. 7 is a plot of drift in "C against time for thin film thermocouples on two test

pieces. One test piece was silicon carbide tested at 1100"C for 95 hours with a 500"C

temperature gradient across the thin film portion of the thermocouple circuit. In this test, the

primary cause of drift was expected to be oxidation of the rhodium in the Ptl3Rh leg, and

such oxide was visible at the conclusion of the test. It was also expected that the oxide

growth rate would follow a parabolic rate law, because of the passivating effect of the

rhodium oxide layer: and this in turn would cause a similar functional relationship between

temperature drift and time, which can be seen to be the case in Fig. 7.

The other test results plotted in Fig. 7 are for a thin film thermocouple deposited on

an aluminum oxide substrate, tested at 1500"C for 20 hours, with a 100"C temperature

gradient across the thin film portion of the thermocouple circuit. In these test conditions, the

cause of drift was suspected to be sensor-substrate interaction caused by chemical reaction or

diffusion. The functional relationship of temperature drift with time is seen to be

approximately linear.

Durability of Thin Film Thermocouples

The four ceramic materials used in this research program exhibited significantly
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different charcteristicswhenexposedto high temperatures.The oxide ceramics, ahtminum

oxide and mullite, showed little visible surface deterioration when exposed to the entire

temperature range of these experiments (1000-1500"C). The aluminum oxide was 99.6% pure

and the mullite was a 98% pure mixture of aluminum oxide and silicon dioxide (60 to 38

ratio). Despite the lack of visible st, rface deterioration, the thin film sensors showed a

significant increase in drift rate on these substrates above about 1300"C (see Fig. 5),

indicating some form of sensor-substrate interaction. Very little degradation of the sensor
structure occurred.

The non-oxide ceramics, silicon nitride and silicon carbide, exhibited visible surface

changes during these tests. The silicotl nitride was fabricated by the hot-pressed method

using 13% yttria and 3% alumina as densification agents. It was observed during the testing

process that this material formed a complex surface oxide, and that the rate of oxidation

increased dramatically at temperatures above about 1250"C. As the oxide formation increased

in magnitude, it caused a gradual bubbling and delamination of the thin film sensor material.

The silicon carbide was 99% pure and required an insulating layer to be sttperimposed

between the sensor and the substrate because it is an electrically conducting ceramic. The

insulating layer consisted of a thermally grown silicon dioxide layer plus a sputter-deposited

aluminum oxide layer. The silicon carbide showed no visible deterioration during testing up

to about 1250"C, but above this temperature, the surface morphology began to change to a

glassy appearance over a portion of its surface, and other nonuniformities in structure

appeared. This change in surface rnorphology caused delamination of the thin film sensor

material to begin,-: .....

A total of 15 test samples with thin film sensors were used in these experiments.

Thermal cycling accompanied repealed steady-state tests of the same test sample tip to a

maximum of five cycles. No sensor failures occurred as a result of thermal cycling. Steady

state testing of a single test sample occurred for various times up to a maximum of 149

hours. No sensor failures occurred as a result of total test time. The only sensor failures
occurred on silicon nitride and silicon Carbide substrates and correlated with a deterioration of

the ceramic substrate when tested beyond a critical temperature level in the range above about
1250"C.

Photographs of the thin film thermocouple hot junctions were taken at different stages

of the testing process (Figs. 8 and 9). Also shown in these figures is the number of hours of

testing time and the maximum test temperature of each specimen. Fig. 8 shows the sensors
on aluminum oxide and silicon nitride substrates. The sensors on aluminum oxide substrates

show negligible degradation up to 1355"C. Oxide formation can be seen on the silicon nitride

surface at 1167"C, and a dramatic increase in the magnitude of the oxide formation is seen at

134Y'C, causing a bubbling of the sensor material and leading to delamination. Sensors on

silicon carbide substrates are shown in Fig. 9. Negligible degradation of sensor films is seen

up to 1246"C, but at 1322_'C, morphological changes in the substrate have begun to appear,
leading to the start of sensor delamination.

Jacobs0n (ref. 14) discusses tile durability of ceramic materials for use in advanced

propulsion systems. He points out that the ceramic materials will degrade chemically by

oxidation, vaporization, and interfacial reactions. For the oxide ceramics, such as aluminum

oxide and mullite, vaporization is the major mechanism. In these experiments, this could lead

to a slow, gradual deterioration of the bond between the sensor and the substrate.

For the non-oxide ceramics, such as silicon nitride and silicon carbide, all three
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mechanisms of oxidation, vaporization, and interfacial reactions are at work. For silicon

nitride, the oxidation of the silicon nitride not only forms an interface at the oxide-substrate

boundary, but can lead to a complicated structural interaction with yttria and alumina present

as densification agents in the ceramic. This was seen in Fig. 8 to result in the rapid

formation of an irregular oxide structure above 1250"C leading to sensor delamination. In the

case of silicon carbide, the interlaces were deliberately formed by thermal oxidation and

sputtered alumina to form the insulating layer tbr the sensor. Above 1250"C, the formation of

a glassy layer and other irregular structure in the surface layers of the ceramic could be

caused by interfacial reactions, phase change, or further oxidation. This leads to a

deterioration between the sensor-substrate bond, and eventual delamination.

Lifetime goals for thin film sensors of 50 hours or more are feasible at tetnperature

levels where a particular ceramic substrate is st, fficiently stable. Each formulation of a

ceramic must be evaluated to determine this limit.

Heat-flux-calibration Facility Tests

Another aspect of sensor durability is the ability of the sensor to withstand high

heating rates accompanied by rapid temperature excursions from room temperature to the

maximum operating temperature of the sensors. The arc lamp heat-flux-calibration facility is

capable of concentrating a high, known heat flux over a small, well-defined area. Lamp

currents from 30-400 amps are used to generate heat fluxes from about 0.1-5 Mw/m 2 over a 1

by 4 cm area. Fig. 10 shows a test piece with a thin film thermocouple deposited on the

surface in such a way that the hot junction is at the center of the focal area of the lamp. The

test piece is silicon nitride, and a black coating is applied to a portion of the surface to

increase the absorption of the radiant energy. A second thin film thermocouple is mounted

on the back surface directly behind the front sensor. Fig. 11 shows the temperature rise vs

time for the hot-side thermocouple for different lamp currents. Heating rates from about 2-

2500"C/sec were generated in these tests. Silicon nitride and muilite were used. Maximum

temperature was 1500"C, and maximum AT across a ceramic was 560"C. No sensor failures

occurred during these tests, and a single test piece was subjected to a maximum of 20 test

cycles. Note that in these tests the total test time is measured in seconds or minutes rather

than hours and therefore the ceramics suffered very little surface degradation.

SUMMARY OF RESULTS

Ptl3Rh/Pt thin film thermocouples were fabricated on ceramic substrates of silicon

nitride, silicon carbide, aluminum oxide, and mullite using the sputtering process. They were

tested in high temperature furnaces in steady state and thermal cycling modes in the

temperature range from 1000-1500"C. The following results were determined:

1. The output of a Ptl3Rh/Pt thin film thermocouple was lower than the output of a

reference wire thermocouple by 3 percent of the value of the temperature gradient applied to
the thin film.
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2. A principal cause of thermocouple drift of the thin film thermocouple was determined to
be rhodium oxidation of the Ptl3Rh thin film thermoelement. A much smaller drift was

caused by rhodium oxidation of the lead wire. Rhodium oxidation was confined to that
portion of the thermocouple circuit below about 1000"C. Above this temperature the rhodium

oxide dissociates. The rhodium oxidation proceeds at an approximately parabolic rate.
3. Above about 1250"C, thermocouple drift increased rapidly. The cause of this drift is

presumed to be a chemical reaction or diffusion effect at the sensor-substrate interface.

4. Oxidation of tile silicon nitride substrate was visible in tests above 1000"C and increased

rapidly above 1250_C. Formation of this surface oxide led to bubbling of the thin film
sensor and eventual delamination.

5. No physical change in the appearance of the silicon carbide was seen tip to 1250"C.

Above this temperature, the surface morphology changed to a glassy appearance accompanied

by other nonuniform structural defects. These changes could be caused by interfacial

reactions, phase change, or oxidation. The changes caused bubbling and delamination of

the sensor to begin.

6. No physical change in the appearance of tile aluminurn oxide or mullite was seen in the

temperature range of these experiments. Thin film sensors on these materials showed very

little degradation.

7. Thin film sensors were tested for tip to 149 hrs and five thermal cycles in furnace tests

without failures attributable to these conditions alone. Lifetime goals for thin film sensors tip

to 50 hours or rnore appear feasible at temperature levels where a particular ceramic substrate

is sufficiently stable.

8. Thin film sensors on silicon nitride and mullite were tested in an arc lamp heat-flux-

calibration facility to a maximum temperature of 1500"C, heating rates from 2-2500"C/sec,

and up to 20 therlnal cycles, with no sensor failures.
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TABLE I- DESCRIPTION OF CERAMIC MATERI__LS

MATERIAL FAB. SURFACE THICK" DENSITY, THERMAL ELECTR.- ! MELTING

METHOD gin/cm _ COND. , RES., IW/m- K ohm -cm °C

SILICON

NITRIDE

S INTERED 3.28 3O

FINISH, NESS,

Jim Din

.5- .75 6

.25- .5 6

.075- .15 1.5

.25- .5 4.5

1014

TCE',

_C :xl0 6

PURITY,

%

84

POINT,

1900

2700

2040

1700

SILICON SINTERED 3.1 125 10 4 99

CARBIDE

ALUMINUM TAPECAST 3 .9 25 i0 _4 8 99.6

OXIDE

MULLITE 3.6 4 I0 _' I0H_-

P_SS_

"- Temperature coertzclent ot expanslon

98

PtOR Pt13Rh SENSOR

CERAMIC SUBSTRATE "_

PtOR 1_13Rh SENSOR

S PLFfq'E R E D AI20- 3

\
ELECTRICALLY CONDUCTIH(3

CERAMIC SUBSTRATE %,

Silicon Nitride
Aluminum Oxide
Mullite

Silicon Carbide

Fig. I. Schematic diagram of thin film thermocouples on ceramic substrates.
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£LACK AND WHITE PHOTOGRAPt4

Fig. 2. Thin film Ptl3Rh/Pt thermocouples on ceramic materials for high temperature furnace
tests.
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Fig. 3. Measurement of temperature gradient across thin film portion of thermocouple circuit

on silicon carbide and silicon nitride substrates- high gradient configuration.
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DRIFT RATES FOR THIN FILM THERMOCOUPLES
PT13RH/PT ON CERAMIC 8UBSTRATES
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Fig. 4. Drift rates of Ptl3Rh/Pt thin film thermocotlples on ceramic substrates with 500-

600"C temperature gradient across thin film portion of thermocouple circuit.
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DRIFT RATES FOR THIN FILM THERMOCOUPLES
PT13RH/PT ON CERAMIC SUBSTRATES
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Fig. 5. Drift rates of Ptl3Riv'Pt thin fihn thermocouples on ceramic substrates with 100"C

temperature gradient across thin film portion of thermocouple circuit.



Drift Rates for Thin Film Thermocouples

Drift rate,_C/hr

2"6 I
2

811loon Nltrlde 811loon Carbide Alumina Mulllta Pt13Rh/Pt

5-um Pt13Rh/Pt film on ceramic-75um wire

Temperature,_'C

1160 _ 1370 _ 1420 _ 1500

Fig. 6. Drift rates of 5/.im Ptl3Rh/Pt thin film thermocouples and 75 tam lead wires at

selected temperature levels.
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Fig. 7. Comparison of drift rates for Ptl3Rh/Pt thin film thermocouples on silicon carbide at
1100"C and aluminum oxide at 1500"C.
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A. ALUMINUM OXIDE SUBSTRATE

TEST TIME = 38 HOURS

MAXIMUM TEST TEMPERATURE = 1216°C

B_ ALUMINUM OXIDE SUBSTRATE
TEST TIME = 94 HOURS

MAXIMUM TEST TEMPERATURE = 1355°C

C. TEST TIME = 149 HOURS

MAXIMUM TEST TEMPERATURE = I167°C

D. I[S'I TIME : _0 HOURS
MAXIMUM TEST TEMPERATURE : 1343_C

Fig. 8. Ptl3Rh/Pt thin fihn thermocouple hot junctions on aluminum oxide and silicon nitride

at different stages of the testing process.
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D. TEST rills: = 5t_ flOURS
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Fig. 9. PtI3RWPt thin film thermocouple hot junctions on silicon carbide at different stages

of the testing process.
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Fig. 10. Ptl3Rh/Pt thin film thermocouple on silicon nitride substrate for arc lamp heat-flux-
calibrator test.
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Fig. 1 l. Heating rate curves for Ptl3Rh/Pt thin film

substrate in arc lamp heat-flux-calibrator test.

thermocouples on silicon nitride
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